Molecular computation by DNA hairpin formation.

نویسندگان

  • K Sakamoto
  • H Gouzu
  • K Komiya
  • D Kiga
  • S Yokoyama
  • T Yokomori
  • M Hagiya
چکیده

Hairpin formation by single-stranded DNA molecules was exploited in a DNA-based computation in order to explore the feasibility of autonomous molecular computing. An instance of the satisfiability problem, a famous hard combinatorial problem, was solved by using molecular biology techniques. The satisfiability of a given Boolean formula was examined autonomously, on the basis of hairpin formation by the molecules that represent the formula. This computation algorithm can test several clauses in the given formula simultaneously, which could reduce the number of laboratory steps required for computation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance of Cloned 1F5 Chimeric Anti-CD20 Antibody Heavy-Chain Gene to DNA Polymerase due to a Predicted Hairpin Structure

Background: Formation of secondary structure such as DNA hairpins or loops may influence molecular genetics methods and PCR based approaches necessary for genetic engineering, in addition to gene regulation. Materials and Methods: A polymerase chain reaction with splice overlap extension (SOE-PCR) was used to create fully synthetic 1F5 chimeric anti-CD20 heavy- and light-chain genes. The chi...

متن کامل

A new DNA computing model for the NAND gate based on induced hairpin formation.

Hairpin structure of DNA molecules has been widely employed in a variety of biosensors and in nanoscale molecular assembly applications. For example, the well known molecular beacons can report the presence of specific nucleic acids in homogeneous solutions with high accuracy. Recently, Smith et al. proposed the induction of hairpin formation through sequence-specific binding of a small-molecul...

متن کامل

On Some Algorithmic Problems Regarding the Hairpin Completion

It is known that a single stranded DNA molecule might produce a hairpin structure due to two biological principles, namely Watson-Crick complementarity and annealing. In many DNA-based algorithms, these DNA molecules cannot be used in the subsequent computations. Hairpin or hairpin-free DNA structures have numerous applications to DNA computing and molecular genetics. Suggested by the two afore...

متن کامل

Hairpin-loop formation by inverted repeats in supercoiled DNA is a local and transmissible property.

Short inverted repeat sequences adopt hairpin stem-loop type structures in supercoiled closed circular DNA molecules, demonstrated by S1 nuclease cleavage. Fine mapping of cleavage frequencies is in good agreement with expected cleavage patterns based upon the interaction between an unpaired loop and a sterically bulky enzyme molecule. Whilst the topological properties of underwound DNA circles...

متن کامل

Folding of a DNA hairpin loop structure in explicit solvent using replica-exchange molecular dynamics simulations.

Hairpin loop structures are common motifs in folded nucleic acids. The 5'-GCGCAGC sequence in DNA forms a characteristic and stable trinucleotide hairpin loop flanked by a two basepair stem helix. To better understand the structure formation of this hairpin loop motif in atomic detail, we employed replica-exchange molecular dynamics (RexMD) simulations starting from a single-stranded DNA confor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 288 5469  شماره 

صفحات  -

تاریخ انتشار 2000